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Using a simulation technique introduced recently, we study winding clusters in
percolation on the torus and the Möbius strip for different aspect ratios. The
asynchronous parallelization of the simulation makes very large system and
sample sizes possible. Our high accuracy results are fully consistent with predic-
tions from conformal field theory. The numerical results for the Möbius strip
and the number distribution of winding clusters on the torus await theoretical
explanation. To our knowledge, this study is the first of its kind.
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1. INTRODUCTION

Since the seminal article of Langlands et al., (10) percolation has enjoyed
a renaissance in the last decade. Cardy’s result (3) for the probability of a
crossing cluster on a rectangle was the first major breakthrough of con-
formal field theory in critical percolation. Related to this work, Pinson
calculated the probability of clusters of particular winding numbers
in ref. 19, using the partition sum for the torus formulated earlier by
di Francesco et al. (5)

In 1996 Hu and Lin showed numerically (7) that the probability of
more than one percolating cluster is non-vanishing, which was proven by
Aizenman (1) shortly afterwards. In fact, Cardy was able to calculate the
asymptotic probability of n distinct, simultaneously crossing clusters (4)



exactly. One expects similar behavior for the number of distinct, simulta-
neously winding clusters on the torus.

In this article we present numerical results for (multiply) winding
clusters on the torus and on the Möbius strip with different aspect ratios,
providing strong numerical support for the claim of conformal invariance
in two dimensional percolation. Apart from the numerical results for r=1
by Langlands et al. presented in ref. 19, the only other numerical studies
of this kind, to our knowledge, is one by Ziff et al., (24) who measure the
probability of a cross topology for very small system sizes (16 × 16) and
different twists on a torus with aspect ratio 1, and those by Newman and
Ziff, (17, 18) who measure the probability of winding clusters on a torus with
aspect ratio 1 and system sizes up to 256 × 256 and varying occupation
probability. Also, for the Möbius strip we are only aware of studies on the
Ising model. (8, 11)

1.1. Critical Percolation on the Torus

We treat site and bond percolation as the two limiting cases of the
more general site-bond percolation: Sites are occupied with probability p (s)

and bonds are activated with probability p (b). In site percolation all bonds
are active, while in bond percolation all sites are occupied. Two sites are
connected if the bond between them is active and both sites are occupied.
Two sites belong to the same cluster if they are connected by a path along
occupied sites and active bonds. On a torus and the Möbius strip, these
paths may wind around the lattice. By our convention, (a, b) counts the
number of windings in the horizontal and vertical directions, respectively.
Vertical and horizontal directions are fixed by the definition of aspect ratio
as the vertical circumference (waist) over the horizontal circumference
(ignoring the distortion), see Fig. 1.

Fig. 1. A torus with r=lv/lh and a (2, 3) winding cluster shown as a thick line. The winding
directions of (a, b) are marked as such.
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The topological considerations in this paper are mainly technically
motivated and rather heuristic. For rigorous proofs, we refer to the stan-
dard literature. (14) On the torus, it is a topological fact that if a=0 (b=0)
then the only path which is not homotopic to a point and does not intersect
itself has b=1 (a=1). There is no topological difference between (a, b)
and (−a, −b)—the direction in which these paths are taken is simply
inverted. If a ] 0 and b ] 0 then a and b must be relative prime if the path
does not intersect itself.

In the following, winding numbers (a, b) will be used in a ‘‘normal-
ized’’ fashion: a=1 for b=0, b=1 for a=0, a and b are relative prime if
a ] 0 and b ] 0, and a \ 0. A (2, 3) path is shown in Fig. 1.

In addition to the above, we also mention the path with the so-called
‘‘cross topology.’’ (5) Such a path is produced by intersecting a (1, 0) and a
(0, 1) path.

To transfer the notion of winding from paths to clusters, one considers
all (topologically different) paths within a cluster. If there is a path with
non-zero winding numbers that crosses only paths which are homotopic
to a point or have the same winding numbers, the cluster is assigned the
winding numbers of the path. If there is no winding path at all, then this
cluster itself is said to be homotopic to a point. It transpires that in any
other case the cluster contains a cross-topological path and the cluster is
then said to have a cross topology itself.

The universal probability to obtain n clusters with winding numbers
(a, b) at aspect ratio r is denoted in the following by P1 ((a, b), n, r). Pinson
has derived the formula (19)

P1 ((a, b), \ 1, r)= C
l ¥ Z

Za3l, b3l(
2
3 ; r) − 1

2 C
l ¥ Z

Za(3l+1), b(3l+1)(
2
3 ; r)

− 1
2 C

l ¥ Z

Za(3l+2), b(3l+2)(
2
3 ; r) − C

l ¥ Z

Za2l, b2l(
2
3 ; r)

+ C
l ¥ Z

Za(2l+1), b(2l+1)(
2
3 ; r) (1)

where

Zm, n(g; r)=
`g

`r g2(e−2pr)
exp 1− pg 1m2

r
+n2r22 , (2)

and

P1 ((a, b), \ n, r)= C
.

i=n
P1 ((a, b), i, r). (3)

Winding Clusters in Two-Dimensional Percolation 841



Here g(q) is the Dedekind eta function

g(q)=q1/24 D
.

k=1
(1 − qk). (4)

Correspondingly, the probability of a cross topology is denoted by
P1 (X, r), and the probability that all clusters in a given configuration are
homotopic to a point is denoted by P1 (0, r). The exact expressions for these
probabilities are

P1 (X, r)=P1 (0, r)=1
2 (Zc(

8
3 , 1; r) − Zc(

8
3 , 1

2 ; r)) (5)

with

Zc(g, f; r)=f C
m, n ¥ Z

Zfm, fn(g; r). (6)

In the following, we will distinguish exact results from numerical
results by putting a hat on all exact quantities. Where necessary, the
numerical results will also have an index indicating the system size and
a superscript (s) for site percolation and (b) for bond percolation. For
example, P (b)

N=30002((1, 2), 1, 9) is the fraction of cases in which we observed
a single (1, 2) cluster in bond percolation with aspect ratio 9 and 30002

sites.
Multiple, distinct clusters with the same winding number can coexist

without intersecting. (5) This, however, does not apply to a cluster with a
cross topology: there can only be one such cluster on a torus. Winding
clusters with incommensurable winding numbers, meanwhile, cannot coexist.
Thus an entire configuration of the lattice on the torus is characterized by the
winding numbers of the winding clusters, if any, and their total number.

The Möbius strip is a little more complicated in this respect. First of
all, since the Möbius strip is a non-orientable surface, a reasonable defini-
tion of a spanning cluster connecting one side to the other is not possible,
unlike, for example, clusters on a cylinder connecting top and bottom. (4, 20)

Winding clusters behave rather surprisingly. A single winding cluster,
winding around only once, is possible. Meanwhile, if two winding clusters
coexist, then at least one of them must have winding number 2. In general,
n winding clusters require at least n − 1 clusters with winding number 2. In
fact, all winding clusters are fully defined by the total number a of windings
alone: If a is even, there are a/2 winding clusters with winding number 2.
If a is odd, there are (a − 1)/2 winding clusters with winding number 2,
and 1 cluster with winding number 1. Figure 2 shows a Möbius strip with
2 winding paths adding up to a total winding number 3. The aspect ratio of
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Fig. 2. A Möbius strip with two non-intersecting winding clusters: one with winding number 2
(full line, labelled A, B) and one with winding number 1 (dashed line, labelled C). On the
Möbius strip, the labeled endpoints coincide with their primed counterparts. Below, the
‘‘unwrapped’’ lattice shows the definition of the aspect ratio, r=w/l.

the Möbius strip is defined as the width of the band over the path length
along the band, as shown in Fig. 2.

1.2. Method

The simulation method is essentially a trivially parallelized adaptation
of the Hoshen–Kopelman (6) algorithm with modified ‘‘Nakanishi label
recycling.’’ (2, 16) Master nodes assemble a large lattice from ‘‘patches’’
provided by slave nodes, much in the spirit of ref. 21, for example. Full
details of the method may be found in ref. 15, while the detection of
wrapping clusters is discussed in ref. 20. The method in principle relaxes all
the standard constraints in numerical simulations of percolation, such as
CPU power, memory, and network capacity, and is especially suited for
calculating cluster size distributions and crossing probabilities. Here we use
it to calculate probabilities of winding clusters on the torus and the Möbius
strip for system sizes N=300002, 30002, 3002. Although it is known in
general that finite-size effects are very small for the torus, (21) we decided
nevertheless to simulate such large system sizes to investigate observables
for which the strength of finite-size effects is not yet established. In fact,
it transpires that N=3002 and N=300002 do not deviate significantly.
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Whether or not finite-size effects are relevant can only be known in hind-
sight. The random number generator is described in ref. 13, and is espe-
cially suitable for parallel applications.

2. RESULTS

In this section we first list the key parameters of the simulation. Then
we discuss the assumptions and estimates of the numerical errors associated
with the study. We then present the results for the torus which can be
compared to Pinson’s formulae (1) and (5), asymptotes for which are pre-
sented in Section 2.3. Finally, we present the results for the number distri-
bution of multiple winding clusters and the results for the Möbius strip.

In each simulation, we have determined PN((a, b), n, r) as well as
PN(0, r) and PN(X, r) for site and bond percolation at the critical point,
i.e., occupation probability p (s)=0.59274621 (17) in site percolation and
activation probability p (b)=1/2 (9) in bond percolation.

Each simulation, parametrized by the system size N and the type of
percolation (site or bond), consists of at least 106 realizations. The 14 dif-
ferent aspect ratios are: 30/30, 36/25, 45/20, 50/18, 60/15, 75/12, 90/10,
100/9, 150/6, 180/5, 225/4, 300/3, 450/2, and 900/1. While a torus with
aspect ratio r is topologically identical to a torus with aspect ratio 1/r,
a Möbius strip can be joined along two different borders to form a band
either of aspect ratio r or 1/r. Thus, 27 different aspect ratios are available
for the Möbius strip.

2.1. Numerical Errors

In a numerical simulation an estimate p for the probability of the
occurrence of a particular property (such as 2 winding clusters with
winding number (1, 3)) is measured as the average of an indicator function
f(C) of the configuration C, which is 1, if the property is found in the
configuration and 0 otherwise. As all higher moments of f are p, the
variance of p is then simply estimated as p − p2, so that the variance of
the estimator of the probability is estimated as (p − p2)/(N − 1), where N is
the number of (independent) realizations.

In the following we make use of the symmetry of the torus,

P1 ((a, b), n, r)=P1 ((b, a), n, r−1)

P1 (0, n, r)=P1 (0, n, r−1)

P1 (X, n, r)=P1 (X, n, r−1),

i.e., the results of r and 1/r are not independent.
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2.2. Winding Clusters

One surprising result in Pinson’s paper (19) is that the probability of a
cluster with cross topology, P1 (X, r), is identical to the probability of no
winding cluster at all, P1 (0, r), i.e., the probability that all clusters are
homotopic to a point. This is in perfect agreement with our numerical
results.

It is obvious that there can only be one cluster with a cross topology,
and that any other cluster must be homotopic to a point, i.e., if a configu-
ration contains a cluster with a cross topology, there is no other non-trivial
cluster.

Next we investigate the probability of at least one cluster with winding
numbers (a, b), the exact expression for which was conjectured by Pinson
to be (1). Figure 3 shows the relative deviation of the numerical results
from the exact value for clusters with winding numbers (1, 0), (1, 1), and
(1, 2) for N=300002 and bond percolation. The reason why so many
points seem to indicate no deviation at all is that the probability of certain
types of winding clusters is extremely small. As a result, some rare types
were not observed in the simulation and the resulting deviation from the
exact result is approximately `p/`N − 1, i.e., extremely small. Moreover,
it should be noted that the numerical error of the evaluation of (1) increases
as the probability approaches 0 or 1.
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Fig. 3. The deviation of PN=300002((a, b), \ 1, r) from P1 ((a, b), \ 1, r) (see (1)) in units of
standard deviations for (a, b)=(1, 0), (1, 1), (1, 2) and site (filled symbols) and bond (opaque
symbols) percolation.
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All our numerical findings are fully consistent with (1) for winding
numbers (1, 0), (1, ± 1), (1, ± 2), and (1, ± 3), in site and bond percolation.
Other winding numbers occur too rarely to make any firm statements.

Percolation on a torus is mirror symmetrical, i.e.,

P1 ((a, b), n, r)=P1 ((a, −b), n, r)=P1 ((−a, b), n, r)=P1 ((−a, −b), n, r).
(7)

While a cluster of type (a, b) is simply identical to a cluster of type
(−a, −b), the windings (a, b) and (a, −b) are in fact distinguishable. Since
these two quantities have the same probability, their comparison affords a
consistency check upon the numerics, independent of any theoretical result
or finite size corrections. The numerics passed this test successfully.

2.3. Asymptotes

To discuss numerical results for the asymptotic behavior of multiple
winding clusters, we must first extract an appropriate functional form to fit
against from (1). A calculation closely related to the following was pre-
sented by Ziff for the problem of crossing in two-dimensional percola-
tion (22, 23) and subsequently used in ref. 20.

It is convenient to slightly rewrite Eq. (1). Noting that all Zm, n enter
(1) in the form Zak, bk, it is reasonable to define

Z̃((a, b); g, r)==g
r

C
l ¥ Z

exp 1− l2pg 1a2

r
+b2r22 , (8)

which is just `g/r J3(0, y), where y=ig(a2/r+b2r) and J3 is Jacobi’s
theta function. (12) By using transformations of the form ;l f2l+1=;l fl

− ;l f2l one has

P1 ((a, b), \ 1, r)

=
1

g(e−2pr)2
11

2
Z̃((a, b); 6, r) − Z̃((a, b); 8/3, r)+

1
2

Z̃((a, b); 2/3, r)2 ,

(9)

given appropriate convergence of the sums in (8) and (1). To find the
asymptotic behaviour for (a, b)=(1, 0), it is useful to rewrite Eq. (8) as

Z̃((a, b); g, r)=
1

`a2+b2r2
C

l ¥ Z

exp 1−
p

g(a2+b2r2)
l2r2 , (10)
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by applying the Poisson summation formula. From the definition of the
Dedekind g-function one finds the following expansion for large r:

g−2(exp(−2pr))=epr/6(1+2e−2pr+5e−4pr+10e−6pr+ · · · ). (11)

Using (10) and (11) for the large r expansion of (9) the task boils down to
ordering terms:

P1 ((1, 0), \ 1, r)=1 − 2e− 5
24 pr+e− 1

2 pr+2e−2pr − 4e− 53
24 pr+3e− 5

2 pr · · · . (12)

This approximation has a relative deviation from the exact result of less
than 5 × 10−4 at r=1 and less than 10−8 at r=2.

Using P1 ((1, 0), \ 1, r)=P1 ((0, 1), \ 1, 1/r), the corresponding expan-
sion for small r is now based directly on (8). Thus again for large r

P1 ((0, 1), \ 1, r)== 2
3r

(e− 1
2 pr − e− 5

2 pr − e− 9
2 pr+4e− 35

6 pr · · · ). (13)

At r=1 the relative error of this approximation is better than 3 × 10−8,
which improves to about 10−15 at r=2.

Similarly one finds for P1 (X, r)

Zc(f, g; r)=
1

g(e−2pr)2 Z̃((1, 0); f2g, r) Z̃((1, 0); 1/(f2g), r) (14)

which yields together with (11)

P1 (X, r)=e− 5
24 pr − e− 1

2 pr − 2e−2pr+2e− 53
24 pr − 2e− 5

2 pr · · · (15)

again for large r. The relative deviation is less than 9 × 10−4 at r=1 and
about 10−7 at r=2.

2.4. Multiple Winding Clusters

Unfortunately, it is not straightforward to extend Cardy’s qualitative
arguments in the introduction of ref. 4 for the existence of multiple span-
ning clusters.

Multiple winding clusters with winding numbers other than (1, 0) are
very rare. In fact, we found

P (s)
N=10002((1, 1), 2, 1)+P (s)

N=10002((1, −1), 2, 1)=1.40(8) × 10−7 (16a)

P (b)
N=10002((1, 1), 2, 1)+P (b)

N=10002((1, −1), 2, 1)=1.50(10) × 10−7 (16b)
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based on the data produced at the slave nodes. Probabilities for higher
multiples and other winding numbers are less than about 1 in 2 × 109.

From what has been said in Section 2.3 (see also Eq. (18)) one might
suspect that the probability of n distinct, simultaneously winding clusters
with winding number (1, 0) behaves in the limit of small r like

P1 ((1, 0), n, r) % C((1, 0), n) e−a((1, 0), n)/r
`r. (17)

The variable C((1, 0), n) denotes the amplitude for this type of winding
and a((1, 0), n) is expected to be a second order polynomial in n. (4) Clearly,
the additional factor `r is ‘‘only’’ a logarithmic correction to the domi-
nating exponential, but is in fact clearly visible in the numerics.

Nothing can be derived from Section 2.3 concerning the large r limit,
since the average number of winding clusters and the variance thereof
become very large.

Figure 4 shows the estimated probabilities in the form ln(P/(1−P)). (3, 20)

These probabilities have been fitted against (17) in the small r limit, the
results of which are shown in Table I. Even though the choice of (17) is
somewhat arbitrary for n > 1, very good fits are obtained. These are shown
by the dashed lines in Fig. 4, which represent the fitting results of Table I
fed back into (17). The main source of the numerical error is the fitting
range, which is listed in the table. The range is bounded below by the
smallest value of r that is supported by available data within reasonable
error, and bounded above by the approximate value for r after which the
asymptotic behavior terminates. The ambiguity of the fitting range is not
reflected in the error bars, which indicate only the statistical error. There-
fore the exact result fitted to the function (17) within the given interval
should produce the values listed above.

The dotted line in Fig. 4 shows P1 ((1, 0), \ 1, r), which asymptotically
(small r) contains only a single winding cluster, i.e.,

lim
r Q 0

P1 ((1, 0), \ 1, r) −P1 ((1, 0), 1, r)

P1 ((1, 0), \ 1, r)+P1 ((1, 0), 1, r)
=0 (18)

so that the amplitude C((1, 0), 1) and the exponent a((1, 0), 1) are known
exactly from (13):

C((1, 0), 1)=`2/3=0.8164909... (19a)

a((1, 0), 1)=p/2=1.5707963... (19b)

which is in very good agreement with the results in Table I, indicating that
the fitting range chosen there is reasonable.
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Fig. 4. The rescaled probability P (b)
N=300002((1, 0), n, r) in the form ln(P/(1 −P)) for differ-

ent n. The dotted line shows the analytical result (1), while the dashed lines are fitted accord-
ing to (17) using the parameters shown in Table I.

Just as for wrapping clusters on the cylinder, one might be tempted to
find a systematic dependence of C((1, 0), n) and a((1, 0), n) on n, such as
an exponential and a second order polynomial, respectively. However, we
were unable to identify these functions. Moreover, as the functional form
(17) already differs from the corresponding function for wrapping clusters
on the cylinder, it is not surprising that no similarities were found between
their exponents and amplitudes.

2.5. Möbius Strip

The probability to obtain n windings on a Möbius strip is denoted in
the following by P(., n, r), where n encodes the number of winding

Table I. Multiple Winding Clusters (1, 0). The Numerical Results

PN=30000
2((1, 0), n, r) Are Fitted within the Range Indicated Against (17)

n r range C (s)((1, 0), n) a((1, 0), n) C (b)((1, 0), n) a((1, 0), n)

1 12/75 · · · 30/30 0.811(3) 1.568(3) 0.810(3) 1.566(3)
2 25/36 · · · 60/15 0.856(3) 7.771(12) 0.868(4) 7.813(14)
3 36/25 · · · 75/12 1.364(10) 19.02(4) 1.368(11) 19.02(5)
4 50/18 · · · 90/10 2.05(2) 33.91(8) 2.10(2) 34.05(10)
5 60/15 · · · 100/9 3.76(6) 53.94(16) 3.71(7) 53.82(19)
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Fig. 5. The rescaled probability P (b)
N=300002(., n, r) in the form ln(P/(1 −P)) for different n.

The dashed lines show the fitting results according to (20) using the parameters shown in
Table II. The dotted line approximates the rescaled probability for r around 1 according
to (21b).

clusters and their winding numbers as discussed above. Again, two differ-
ent aspects can be investigated: the probability P(., \ 1, r) and the prob-
ability P(., a, r) for each individual a=1, 2,... .

Figure 5 shows the numerical results for bond percolation and N=
300002, again in the reduced form ln(P/(1 −P)). The behavior is qualita-
tively similar to the one shown for multiple wrapping clusters on the torus,
Fig. 4. Using the same ansatz as for wrapping clusters on the cylinder, (20)

P1 (., n, r) % C(., n) e−a(., n)/r, (20)

Table II. Winding Clusters on the Möbius Strip; Winding n Means n/2 Winding

Clusters with Winding Number 2, if n Is Even, and (n−1)/2 Clusters with Winding

Number 2 Plus a Single Cluster with Winding Number 1, if n Is Odd. The Numerical

ResultsPN=30000
2(/, n, r) Are Fitted within the Range Indicated Against (20)

n r range C (s)(., n) a(., n) C (b)(., n) a(., n)

1 9/100 · · · 25/36 0.982(3) 1.0401(14) 0.985(3) 1.0433(17)
2 25/36 · · · 60/15 0.671(2) 5.832(9) 0.676(3) 5.849(11)
3 36/25 · · · 100/9 0.780(2) 15.62(2) 0.774(3) 15.54(3)
4 45/20 · · · 100/9 1.081(11) 30.93(10) 1.099(13) 31.08(12)
5 60/15 · · · 100/9 1.44(6) 50.6(4) 1.51(6) 51.1(4)

850 Pruessner and Moloney



the results shown in Table II have been derived. The same precautions as in
Section 2.2 apply to the ranges shown in the table. While a(., 1) can be
conjectured to be p/3 with some confidence, the functional dependence
of the exponents and amplitudes on n could not be found. Nevertheless,
according to Fig. 5 the form (20) seems to work quite well.

In the spirit of ref. 10 we have tried to fit PN=300002(., \ 1, r) against a
third order polynomial in ln(r). The result

ln 1 P (s)
N=300002(., \ 1, r)

1 −P (s)
N=300002(., \ 1, r)

2

% − 0.6798(7)+1.3525(9) ln(r) − 0.5648(9) ln(r)2+0.2021(3) ln(r)3

(21a)

ln 1 P (b)
N=300002(., \ 1, r)

1 −P (b)
N=300002(., \ 1, r)

2

% − 0.6793(8)+1.3545(10) ln(r) − 0.5689(11) ln(r)2+0.2033(4) ln(r)3

(21b)

is shown for bond percolation in Fig. 5 as well. Similar to the results above,
the main source of error is not statistical, but systematic, namely in the
choice of the specific function. Nevertheless, the numerical result (21) will
possibly serve as a reference for analytical findings.

3. CONCLUSION

Based on a large scale numerical simulation, this paper provides one of
the first numerical confirmations of Pinson’s analytical results for winding
clusters on the torus, which are based on conformal field theory. It there-
fore also supports conformal invariance at the critical point.

By rewriting Pinson’s results, it was possible to derive some asymp-
totes that have hitherto only been derived for the flat topology. (22, 23) These
asymptotes have been used in the investigation of the probability of mul-
tiple, simultaneously wrapping clusters.

A similar numerical analysis has been carried out for the Möbius strip,
which still awaits analytical treatment.
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